Greek Letters in Statistics: Complete Guide

Statistics and probability theory extensively use Greek letters to represent parameters, distributions, and statistical measures. This guide covers all Greek letters used in descriptive statistics, inferential statistics, probability theory, and statistical modeling.

Core Statistical Parameters

μ (Mu) - Population Mean

σ (Sigma) - Population Standard Deviation

Σ (Sigma) - Summation

Hypothesis Testing & Significance

α (Alpha) - Significance Level / Type I Error

β (Beta) - Type II Error Probability

β Coefficients - Regression Coefficients

Correlation & Association

ρ (Rho) - Population Correlation Coefficient

τ (Tau) - Kendall's Tau (Rank Correlation)

Statistical Distributions

χ² (Chi-Squared) Distribution

θ (Theta) - General Parameter

λ (Lambda) - Poisson Rate Parameter

ν (Nu) - Degrees of Freedom

Probability Theory

Ω (Omega) - Sample Space

π (Pi) - Proportion / Probability

Common Statistical Formulas with Greek Letters

Normal Distribution

PDF: f(x) = (1/(σ√(2π))) × e^(-(x-μ)²/(2σ²))

Standard Normal: Z = (X - μ)/σ

Properties:

Confidence Intervals

For Mean: x̄ ± z_(α/2) × (σ/√n)

For Proportion: p̂ ± z_(α/2) × √(p̂(1-p̂)/n)

Example: 95% CI uses z₀.₀₂₅ = 1.96

Linear Regression

Model: Y = β₀ + β₁X + ε

Where:

Quick Reference Table

SymbolNameMeaningExample
μMuPopulation meanμ = 100
σSigmaPopulation std devσ = 15
σ²Sigma squaredPopulation varianceσ² = 225
αAlphaSignificance levelα = 0.05
βBetaType II error / coefficientsβ = 0.20
ρRhoCorrelation-1 ≤ ρ ≤ 1
χ²Chi-squaredTest statisticχ² = 10.5
λLambdaPoisson rateλ = 3 events/hr
νNuDegrees of freedomν = 10
ΣSigmaSummationΣx_i

Sample vs Population Notation

MeasurePopulation (Greek)Sample (Latin)
Meanμ (mu)x̄ (x-bar)
Std Deviationσ (sigma)s
Varianceσ²
Proportionπ (pi)p or p̂
Correlationρ (rho)r
SizeNn

Tips for Students

Remembering Greek Letters in Stats

Common Mistakes to Avoid

Related Resources